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CRITICAL SHEAR STRESS OF A CURWED RECTANGULAR

PWLWI’I’HACENTRAL~

By Manuel Stein and David J. Yaeger

SUMMARY

A theoretical solution is given for the critical shear stress of a
simply supported curved rectangular plate atiffened by a central
stiffener offering no torsional restraint which lies in either the axial
or circumferential direction. Results are obtained by meana of the
Galerkin method and are presented in the form of computed curves and
tables.

INTRODTXXION

As ~ of an investigation to determine whether the critical load
of a curved rectangular -l can be significantly increased,by means of
a Centtily located stiffener, a panel under axial-compressive load
having a central circumferential stiffener of zero torsional stiffness
was treated in reference 1; a gel having a central axial stiffener
under the same loating conditions was treated in reference 2. These

Q two papers enable a designer to determine ‘themore effective way of
reinforcing curved rectangular panels with a single central stiffener
to resist axial compression. The purpose of the present paper is to
enable the designer to determine the most effective way of stiffening
the seinet= of panel in sheer.

The stiffeners are assumed to have bending stiffness but no
torsional stiffness andare assumed to be concentrated along axial or
circumferential lines in the middle plane of the panel. Because the
critical shear stress is, in general, nearly independent of boundary
conditions for curved panels, except when the panels are very long in
the axial direction, only the simply supported case has been
investigated.

The results of the analysis are presented in the form of curves
and tables from which the critical stress for a stiffened panel may be

.
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2 NACA TN 1972

determined if the dimensions are known. The analysis, which is based
on the G-alerkin~thod, is given in appendixes A and B. The theoretical
solution for a curved rectangular panel with a centr4 circumferential
stiffener is given in appendix A, and the theoretical solution for a
cumed rectangular pm.el with a central axial stiffener is given in
appendix B.

The panel proportions considered cover the range from nearly flat
plates to highly curved plates, ufth aspect ratios of 1, 1.5, and 2.

SYMBOLS

a longer dimension of panel

b- shorter dimension of -1

m,

r

t

w

x

Y

D

E

I

z

nj Pj ~ integers

radius of curvature Of’

thickness Of _&anel

dfsplacemmt in radial

ml

direction of point in median
surface of -81; Posftive otiwazii

axial coordinate of ~el

circumferential coordinate of panel

flexural stiffness of ~el per unit length

()

Et3 “

‘2P - “2)
Young~s modulus of elasticity

effective moment-of inertia of stiffener

curvature parameter g=)

~q> f%ln,~ deflection coefficients in trigonometric series

critical-shear-stress coefficient appearing In

k~ti2D
formula ~ . —

b2t
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%“L [
(P2 + (A32)2+ 12p4p4z2

32J33k~ ( 1
~4 P2 + ~2p2)2

B ()
&aspect ratio. ~

IJ Poisson’s ratio

T critical shear stress

Q operator defined in appendixes

5(X+ Dirac delta function defined by

. .

++ inverse of V4

I?E3ULTs

defined by V+&) = w

AND DISCUSSION

The critical shear stress of a simply supported curved rectangular
~el with a centrally located axial or circumferential stiffener having
zero torsional stiffness (see fig. 1) is given by the formula

T =ks~
b2t

where ks is a numerical coefficient plotted in figure 2 as a function

of the aspect ratio of the panel, the ~el curvature, and the f’lexural
stiffness of the stiffener. ,

The horizontal cut+ffs in the curves of figure 2 represent
approximately the maximum possible buclding strengbh obtainable through
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an increase in stiffetir”.flexural .stflffness.They were calculated by
assuming thatwhen the stiffeners are flexurally rigid, the section of
plate between stiffeners bucldes aa a simply suppotid plate. These
cut+ffs are somewhat consemative because of the str&gthening effect
of’continuity of the sheet--acrossthe stiffeners. (See reference 3.)

8

*.

The maximum possible increase in shear.buckling strength obtainable
through the use ‘of-acentrally located stiffener is shown in table 1.
In this table the buckling stress.coefficients k5 are given for plat~s

with no stfffener and for the same plates”with an infinitely stiff
stiffenm. (The plates with infinitely stiff stiffeners will necessarily -
have nodes at the stiffeners and arere~esented by the cut–+ffs in
fig. 2.) The percentage Increase in k5 due tb the stiffener iS noted. ●

Both table 1 &d figure 2 show that with efther a central axial or
central circumferential stiffener the percentage Increase in strength of
the stiffened panel over the unstiffened gel decreases as the
curvature parameter Z increases. The reduction of 8tiffemr
effectiveness as the curvature pm?ameter increases is not so marked in
the present case as it is for--thecase of axial compression (refer-
ences 1 and 2).

For a panel with a stiffener in the longer direction the percentage
increase in strength increases with aspect ratio, but-tor a panel with-a
stiffener imthq shorter direction the percentage Increase in strength
decreases with aspect ratio.

CONCLUDING REWRES

A theoretical solution is given for the shear buclding strees of .
a curved rectangular panel stiffened by a central axial or circtiee
ential stiffener. The ?%sults are presented in curves and tables smd
show that the effectiveness of a stiffener in raising the shear buckling 4
stress is reduced as the curv&”tu&e@mmeter increases.

— —
The “reduction”

in effectiveness for shear, however, is not so msxked as it-is in the
case of axial compression.

Langley Aeronautical.Laboratory
National Advisory Commfttm-for Aeronautics

Iangley Air Force Base, 7a., Au~t-26, 1949



.

.

,

.

NACA TN 1972

APPENDIX A

THEORETICAL SOL~ION IUR CR17TICALSHEAR STRESS

OF CUWED RECUWGULKR PANEL WITH CENTRAL

clRcTMFEmmTIAIl STmFEmR

Equation of equil.ibrium.-The critical shear stress of a curved
rectangular panel having a central circumferential stiffener of zero

torsional stiffness located at x = ~ may be obtained by solving the

equation of eqtilibri~

5

(Al)

This equation, without the third term, is discussed in referenoe 4. The
third term which represents the effect of the stiffener flexural
stiffness is explained in referenoe 1.

The equation of equilibrium may be represented by

Q(w) = O (N2)

Method of soltiion.- Equation (Al) my be solved by the Galerkin
method as outlined in references 4 and ~. As suggested in reference 1+
for simply suworted curved rectangular qels, the folluulng series
e~sion is used for w:

(A3)

.
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system used is shown in figure l(a). The coef-
are then chosen to satisfy the equation

sin~sin~Q(w)dx dy=O (P=l,2,3 ...) (A4)

(q=l,2,3 ...)

When the operations indicated in equation (Ah) are wrformed, a
set of homogeneous Mneer alg@raic eq~~~~ in t~ ~o~ coe~-.
ficients am is obtained with k8 appearing aa a _gmgwmeter. The

solution for the critical-shear-stresscoefficient--k~ fs then found to

be the minimum value of k8 for which the algebraic equations have a

rionvanishingsolution for ~q, that-is, for which the plate is in

equilibrium In a deflected state.
—.

Substitution of the expressions for Q and w given by
equations (A2) and (A3) into equation (AA) leads to the following set of
algebraic equations: . .—

.—

b

.—

(A~) “ “

,

where the summation includes only those values of m and n for
which m & p and n k q are odd. The condition for a nowanishing
solirtlonof these equations is the vanishing of the determinant of the
coefficients of the unknowns %“ This infinite determinant can be

factored into the product of two infinite subdetmmimants, one in
which p k q is even and one in which p k q is odd. The vanishing
of these subdeterminants leads to the followtng determinantal equations:

.

.



If p k q Is emm,

. ●

P= l,q=l

p=ljq=3

p=2, q=2

P=3, q=l

P=3, q=3

P =2, q=4

p=4, q=2

P= l,q=5

p=y, q=l

p=4, q=4

.

.

.

. .

o 4 +&n
?f 16~Db

. > , .

a33 %4 a42 a15 %1 au . . .

. . . . . . . .

. . ● ✎ ✎ ✎ ✎ ✎

✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎

144
~“””

o . . .

0 . . .

_Kj -..
27

-g . . .

Mu . . .

.

.

.

-1



Smlr P*g Isc’od,

p-2, a.5
8

P-3, ’a-4 o

p.4, q-3 ~

.

,. .

.

1

dlen I

if P4aca.

%

0

0

o

.

CD

% %3.%2 ‘h % %5 % % ““”

o
$ $-$ 0 $ 0, $ . . .

-+ o $ 0 -$ 0 g “o . . .

% -f o -g o
~ S@L + . . .

6--
%3

-g o -$ 0 g o . . .
T

o -3g ~ -+ o -+ o E
35 ““”

4 0
a

%
ti

Z5
--

T -r% 0 -35 0 ““”

o
‘$ 0 $ ~15 ‘~ 0 -$ ““”

40 20
+%

o --
%5 -! 0

.,. .0 (A7)
‘1

-!MOl% so

-%= -% ‘Om -:
B$, . -~ .,.

_16 o g o

-g 0

-~ n’, . . . .
37

. . . . . . .

. . . .’. .

. . . .

[“ +7$??%+]~---& (f+ Q%Q)*

. . ,-
,. .: 1’



NACA TN 1972 9

.

.

These determinsnts give the buckling load of a curved rectangular
panel stiffened by a ceritralcircumferential stiffener tith various
length+idth ~tlos for buckle ~tte?mm res~ctively symmetrical and
antisynmetrlcal about the center of the pel.

By use of a finite determinant including the rows and”columns
corresponding to the most importamt terms in the ex&ansion for w
(equation (A3)), equations (A6) and (A7) were solved by the Crout
method (reference 6) for the lowest value of ks which satisfied these

equations. The lower of the two values of ks found by SOIViIlg

equations (A6) and (A7) is the critical-shea~tress coefficient for
the particular values of j3 and Z under consideration.

The results are plotted in the form of the critical+hear-stress
coefficient against the ratio of the flexural.stiffness of the stiffener
to that of the plate for different values of j3 and Z. For purposes
of comparison, the spibols defining the circumferential and axial
dimensions are interchanged in table 1 and in figure 2.

.

.’

.
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APPENDIX B

TEEQRETICAL SOLUTION KIR CRITICAL SHEAR STRESS

OF CuKwED REwANm PANEG m

CENTRKG AXCAL STIFFENER

Equation of eQuilibrium.- The critical shear stress of a curved ●

rectangular panel reinforced by a central axial.stiffener of zero

torsional stiffhess located at y = ~ may be obtained by a method o? .

solution almost identical with that employed in appmdix A.

The new equation of equilibrium becomes

t

()Id+w+w?+$Y+m& Y-+
r2 &4 *

+2Tt&=o

hay

This equathn, In turn, maybe represented by

Q(w) =0

Method of solution.- Equation (B2)
method in a manner similar to that used
following series ex~ion is used for

~=sx%sin
nEl n=l

(Bl)

(B2)

may be solved by the Galerkin
fn appendix A, where the
w:

The coordinate system used is shown in fi~e l(b). The coef-
ficients ~ are then chosen to satisfy the eqmt ion

*

L)
a b

sin.~sin&Q(w)dxdy (P=l, 2, 3 . . .)
a (34)

00 (q=l,2,3 ...)

.
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Substitution of the expressions for Q and w given by
equations (B2) end (B3) into equation (B4) leads to the following set
of algebraic equations:

[

am IF+ ~q++ Mz%++-d
x “14(P2 + q%32)2

.

+p~pk~in+f~~pksin ~.o (p =1,2, 3.. .) (B5)
k (IZ = 1,2,3...)

where the summatIon includes only those values of m and n for
which mkp and n~q are odd. The condition for a nonvanishing
solutlon of these equations is the vanishing of the detemninant of the
coefficients of the unlmowns ~. This infinite determinant can be

factored into the product of two infinite subdeterminants similar to
those in appendix A, one in which p k q is even and one in which
p~q iS odd.

These determinantts give the buclding load ,ofa rectangular curved
panel stiffened by a central axial stiffener with various len@h-width
ratios for buclde ~tterns respectively symmetrical.and antisymmetrical
about the center of the ~el.

Using a finite determlnant, such as that employed in appendix A,
and solving by the Crout method for the lowest value of ks which

satisfies these equations result in the critical-she~tress coef-
ficients for the ~lcul~ values of @ and Z under consideration.

The results are plotted in the same way as are those found in
appendix A. l’lgure2 shows the comparison between axial and
circumferential stiffening of curved rectangular gels.

.

●
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TABLE1 -.

CRZKt~ CCE17UTCIENPS FOR BUJKLUC WITHOUP ~

ANDFORB~ WITH NODE AT S~ OFFEWWJ

ZERo ToFsKmL msrRAmP

z=l!g~s
%=g

a
Parcentaga inareaae

ii
(a) (b)

(b) - (a) ~ ~m

Buakltng without Budding with node
(a)

atIffenar at atiffener

1 1 26.6 182
10 2:$ 28.4 144
30 l-f.5g 87

33.55 x
loca 157.40 228.o g

1.5 1 7.12 13.9
10 8.55

95
15.7 84

30 14.30 21.7
100

52
27.15

1ooo
40.7

U29.70 176.0 $

2 1 6.62. 9.4 43
10 7.65 U-.7 %
30 12.48 17.6 21

26.19 33.6 28
low u-(.30 157.4 34

m7
1~b-uj

1.5 7.37 .24.0 226
& 9.49 25.6 l-p
30 13.23 $.: 100

30.73 63
llxM 154.00 216:o 40

2 1. 6.~ 23.2 251
10 8.95 24.2 lp

100
30 14.1o 28.5 103

29. m - 48.8 69
1ooo 153. w 21.6.O

w!i&--
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TAEm 1- Cond.udd

cRITI~ conmIomm3 Km HKx.Ims Wrcmur ETmFEmR

AND FOR B~ WITH NODE AT ~ @I’EUK+

ZERoTOR210NA.LBmmfJm’- Cm-ialtid

Ttb
%“= -

~ .=$~~
DY# Percentage inoxwwe

b
(a) (b)

(b) - (a) ~ ~

Buoliung ?dthollt Buo~ m!.thnode -7d-

atmener at stiffener

1 1 9*L.L 26.4 MO
1o”, IJ.65 26.6 228
30 17.59 ‘ 29.2 66

33.55 k9.2
1000 13.40 le2.5 ??

1.5 Qk
m= 2:$ m &
30 14.30 27.2 w-

27.15 42.4
I.mo 129.70 157.2 ?

2 1 22.7 244
10 ::Z 23.2 203
30 lQ.48 26.4

26.19
1ooo 117.30 u?::

56
27

1.5 1 7.37 13.6 :3
10 9.49 15.5
30 15.23 20.3
100 30.73 37.3 %
lmo 1*.00 MQ.o 4

2 1
w

9.4 43
10 H..7 30
30 1.4.1o 17.6 25

2$?.lo 33.6 15
1ooo 153.00 157.4

+“

.“
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(d Creed rectangular panel with
cticumfel?ential stiffener.

centrsl

+ b -—j

(b) Curved rectangular panel with central
axial stiffener.

~
Figure l.- Coordinate system ueed.
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(a) C!lrcumferentialstiffener; axial dimension greater
than circumferentid dimension.

Figure 2.- Theoretical critical shear stress of a curved rectangular
panel with a central stiffener.

.

.

.

a

.

..



NACA TN 1972 17

●

✎

300

I ; 7 ‘

B z

200
1.J5

~der
1000

100

6.0 I 1.5
Cylinder

100
40

20

10

%i~”’nder 30
10H
30 - 10

20 -4 ‘ ‘ Cylinder

10 : g ~

6 “

‘o .! I 10 102

(b) Circumferential stiffener; circumferential dimension
greater than axial d~nsion.
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Figure 2.-Continued.
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(c) Axial stiffener; exhl dimension greater than
circumferent-id dimensim.

Figure 2.– Continued.
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(d) Axial stiffener; circumferential Mmension greater
than exiel dimension.

Figure 2.– Concluded.
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